Lecture 10

Topic: AI/ML models Decision tree
Purpose of the lecture:

a) Students will have to understand the concepts of an Al, ML and DL technology
b) Have to understand the processes of Decision tree

Basic terms of the lecture:

Artificial Intelligence (Al); Machine learning (ML); deep learning (DL); Decision tree
Short abstracts:

Artificial intelligence (Al) is intelligence demonstrated by machines, unlike the natural
intelligence displayed by humans and animals, which involves consciousness and
emotionality. Machine learning (ML) is the study of computer algorithms that improve
automatically through experience. It is seen as a part of artificial intelligence. A decision
tree is a decision support tool that uses a tree-like model of decisions and their possible
consequences, including chance event outcomes, resource costs, and utility. It is one way to
display an algorithm that only contains conditional control statements. In this lecture we are
going to discuss Decision tree technology and create a simple model for text classification.

Main questions of the lecture:

1) Why we study Decision tree techniques.

2) Describe the benefits of Decision tree

3) Describe the main purpose of the Decision tree
4) Describe the process of Decision tree

Recommended list of literature sources:

1. Zeigler, B. P., T. G. Kim, and H. Praehofer. (2000). Theory of Modeling and Simulation. New York, NY,
Academic Press.

3. Dubois, G. (2018) "Modeling and Simulation", Taylor & Francis, CRC Press.

4. S. Inc, "Artificial Intelligence (Al)," 2016.

5. S. J. Russell and P. Norvig, Artificial intelligence: a modern approach (3rd edition): Prentice Hall, 20009.
6. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Press (2009)

7. Barber, David. 2012. Bayesian Reasoning and Machine Learning. Cambridge University Press.

Main contents of the lecture:

e Decision Tree is a Supervised learning technique that can be used for both
classification and Regression problems, but mostly it is preferred for solving
Classification problems. It is a treestructured classifier, where internal nodes
represent the features of a dataset, branches represent the decision rules and each
leaf node represents the outcome.


https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Human_intelligence
https://en.wikipedia.org/wiki/Animal_cognition
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Decision_support_system
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Causal_model
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Utility
https://en.wikipedia.org/wiki/Algorithm
https://www.taylorfrancis.com/books/9781351241120/

In a Decision tree, there are two nodes, which are the Decision Node and Leaf
Node. Decision nodes are used to make any decision and have multiple branches,
whereas Leaf nodes are the output of those decisions and do not contain any further
branches.

The decisions or the test are performed on the basis of features of the given
dataset.

It is a graphical representation for getting all the possible solutions to a
problem/decision based on given conditions. o It is called a decision tree because,
similar to a tree, it starts with the root node, which expands on further branches and
constructs a tree-like structure.

In order to build a tree, we use the CART algorithm, which stands for
Classification and Regression Tree algorithm.
A decision tree simply asks a question, and based on the answer (Yes/No), it
further split the tree into subtrees.

Below diagram explains the general structure of a decision tree:

Decision Node _——)»Root Node

------ e

Sub-Tree ' -
g Decision Node I Decision Node
|
| . |
v v oy v
|
Leaf Node LeafNode Leaf Node Decision Node
____________ ! |
Leaf Node Leaf Node

Why use Decision Trees?

There are various algorithms in Machine learning, so choosing the best algorithm for the
given dataset and problem is the main point to remember while creating a machine learning
model. Below are the two reasons for using the Decision tree:

Decision Trees usually mimic human thinking ability while making a decision, so
it is easy to understand.

The logic behind the decision tree can be easily understood because it shows a tree-
like structure.



Decision Tree Terminologies

e Root Node: Root node is from where the decision tree starts. It represents the entire
dataset, which further gets divided into two or more homogeneous sets.

e Leaf Node: Leaf nodes are the final output node, and the tree cannot be segregated
further after getting a leaf node.

e Splitting: Splitting is the process of dividing the decision node/root node into sub-
nodes according to the given conditions.

e Branch/Sub Tree: A tree formed by splitting the tree.

e Pruning: Pruning is the process of removing the unwanted branches from the tree.

e Parent/Child node: The root node of the tree is called the parent node, and other
nodes are called the child nodes.

How does the Decision Tree algorithm Work?

In a decision tree, for predicting the class of the given dataset, the algorithm starts from the
root node of the tree. This algorithm compares the values of root attribute with the record (real
dataset) attribute and, based on the comparison, follows the branch and jumps to the next
node.

For the next node, the algorithm again compares the attribute value with the other sub-
nodes and move further. It continues the process until it reaches the leaf node of the tree. The
complete process can be better understood using the below algorithm:

e Step-1: Begin the tree with the root node, says S, which contains the complete
dataset.

Step-2: Find the best attribute in the dataset using Attribute Selection Measure
(ASM).

e Step-3: Divide the S into subsets that contains possible values for the best
attributes.

e Step-4: Generate the decision tree node, which contains the best attribute.

e Step-5: Recursively make new decision trees using the subsets of the dataset
created in step -3. Continue this process until a stage is reached where you cannot
further classify the nodes and called the final node as a leaf node.

Example: Suppose there is a candidate who has a job offer and wants to decide whether he
should accept the offer or Not. So, to solve this problem, the decision tree starts with the root
node (Salary attribute by ASM). The root node splits further into the next decision node
(distance from the office) and one leaf node based on the corresponding labels. The next
decision node further gets split into one decision node (Cab facility) and one leaf node.

Finally, the decision node splits into two leaf nodes (Accepted offers and Declined offer).
Consider the below diagram:



Salary is between
$50000-$80000

e

Office near to Declined
home offer

Provides Cab Declined
facility offer

Accepted Declined
offer offer

Attribute Selection Measures

While implementing a Decision tree, the main issue arises that how to select the best
attribute for the root node and for sub-nodes. So, to solve such problems there is a technique
which is called as Attribute selection measure or ASM. By this measurement, we can easily
select the best attribute for the nodes of the tree. There are two popular techniques for ASM,

which are:

eInformation Gain

oGini Index
1. Information Gain:

e Information gain is the measurement of changes in entropy after the segmentation
of a dataset based on an attribute.

e It calculates how much information a feature provides us about a class.

e According to the value of information gain, we split the node and build the
decision tree.

e A decision tree algorithm always tries to maximize the value of information gain,
and a node/attribute having the highest information gain is split first. It can be

calculated using the below formula:
1. Information Gain= Entropy(S)- [(Weighted Avg) *Entropy(each feature)



Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies
randomness in data. Entropy can be calculated as:

Entropy(s)= -P(yes)log2 P(yes)- P(no) log2 P(no)
Where,

e S= Total number of samples
e P(yes)= probability of yes
e P(no)= probability of no

2. Gini Index:

e Gini index is a measure of impurity or purity used while creating a decision tree in
the CART (Classification and Regression Tree) algorithm.

e An attribute with the low Gini index should be preferred as compared to the high
Gini index.

e Itonly creates binary splits, and the CART algorithm uses the Gini index to create
binary splits.

e Gini index can be calculated using the below formula:

Gini Index=1- > jPj 2

Pruning: Getting an Optimal Decision tree
Pruning is a process of deleting the unnecessary nodes from a tree in order to get the

optimal decision tree.

A too-large tree increases the risk of overfitting, and a small tree may not capture all
the important features of the dataset. Therefore, a technique that decreases the size of
the learning tree without reducing accuracy is known as Pruning. There are mainly
two types of tree pruning technology used:

e Cost Complexity Pruning
e Reduced Error Pruning.

Advantages of the Decision Tree

e Itis simple to understand as it follows the same process which a human follow
while making any decision in real-life.

e It can be very useful for solving decision-related problems.

e It helps to think about all the possible outcomes for a problem.

e There is less requirement of data cleaning compared to other algorithms.

Disadvantages of the Decision Tree

e 0 The decision tree contains lots of layers, which makes it complex.
e It may have an overfitting issue, which can be resolved using the Random Forest

algorithm.



e For more class labels, the computational complexity of the decision tree may
increase

Python Implementation of Decision Tree

Now we will implement the Decision tree using Python. For this, we will use the dataset
"user_data.csv," which we have used in previous classification models. By using the same
dataset, we can compare the Decision tree classifier with other classification models such as
KNN SVM, LogisticRegression, etc.

Steps will also remain the same, which are given below:

o Data Pre-processing step

e Fitting a Decision-Tree algorithm to the Training set

e Predicting the test result

e Test accuracy of the result(Creation of Confusion matrix)

e Visualizing the test set result.
1. Data Pre-Processing Step:

Below is the code for the pre-processing step:

1. # importing libraries
2. import numpy as nm
3. import matplotlib.pyplot as mtp
4. import pandas as pd

5.
6. #importing datasets

7. data_set= pd.read_csv('user_data.csv')
8

9

. #Extracting Independent and dependent Variable
10. x= data_set.iloc[:, [2,3]].values
11. y=data_set.iloc[:, 4].values
12.
13. # Splitting the dataset into training and test set.
14. from sklearn.model_selection import train_test_split
15. x_train, x_test, y_train, y_test= train_test_split(X, y, test_size= 0.25, random_state=0)
16.
17. #feature Scaling
18. from sklearn.preprocessing import StandardScaler 6
19. st_x= StandardScaler()
20. x_train=st_x.fit_transform(x_train)
21. x_test=st_x.transform(x_test)

In the above code, we have pre-processed the data. Where we have loaded the dataset,
which is given as:



B8 data_set - DataFrame - ] X

Index User ID Gender Age EstimatedSalary Purchased

2. Fitting a Decision-Tree algorithm to the Training set

Now we will fit the model to the training set. For this, we will import the DecisionTreeClassifier class
from sklearn.tree library. Below is the code for it:

1. #Fitting Decision Tree classifier to the training set

2. From sklearn.tree import DecisionTreeClassifier

3. classifier= DecisionTreeClassifier(criterion="entropy’, random_state=0)
4. classifier.fit(x_train, y_train)

In the above code, we have created a classifier object, in which we have passed two main
parameters;

e "criterion="entropy': Criterion is used to measure the quality of split, which is
calculated by information gain given by entropy.
e random_state=0": For generating the random states.

Below is the output for this:



Out[8]:
DecisionTreeClassifier(class weight=None, criterion="entropy’, max_depth=None,
max_features=None, max_leaf nodes=None,
min impurity decrease=0.0, min impurity split=None,
min_samples leaf=1, min_samples split=2,
min_weight_fraction_leaf=0.0, presort=False,
random_state=0, splitter="best’)

3. Predicting the test result
Now we will predict the test set result. We will create a new prediction vector y_pred.

Below is the code for it:

1. #Predicting the test set result
2.y_pred= classifier.predict(x_test)

Output:

In the below output image, the predicted output and real test output are given. We can
clearly see that there are some values in the prediction vector, which are different from the
real vector values. These are prediction errors.

B y_pred - NumPy array - O | BB y_test - NumPy array - a >

—
[
—_
Fa

—
[=8]
—
s

—
=
—
=

j—y
o
-
Ln

—y
on
—
(=41

-
|
-
=~

-
o

P = —
L= =] (=]
5 B

s
P
=

22 22

23 23

A v e v
| Fomst | Resze | [ Background color Format | Resize [ Badground color

Sve s e sovand e
4. Test accuracy of the result (Creation of Confusion matrix)

In the above output, we have seen that there were some incorrect predictions, so if we want
to know the number of correct and incorrect predictions, we need to use the confusion matrix.
Below is the code for it:

1. #Creating the Confusion matrix
2. from sklearn.metrics import confusion_matrix
3. cm= confusion_matrix(y_test, y_pred)



Output:

B cm - NumPy array - O X
0 1
-
1 3 29
Format Resize [1 Backaround color

Save and Close

In the above output image, we can see the confusion matrix, which has 6+3= 9 incorrect
predictions and62+29=91 correct predictions. Therefore, we can say that compared to other
classification models, the Decision Tree classifier made a good prediction.

5. Visualizing the training set result:

Here we will visualize the training set result. To visualize the training set result we will plot
a graph for the decision tree classifier. The classifier will predict yes or No for the users who
have either Purchased or Not purchased the SUV car as we did in Logistic Regression. Below
is the code for it:

1. #Visulaizing the trianing set result

2. from matplotlib.colors import ListedColormap

3. X_set, y_set =x_train, y_train

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() +
1, step =0.01),

5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))
6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(),
x2.ravel()]).T).reshape(x1.shape),

7. alpha = 0.75, cmap = ListedColormap(('purple’,'green')))

8. mtp.xlim(x1.min(), x1.max())

9. mtp.ylim(x2.min(), x2.max())

10. fori, j in enumerate(nm.unique(y_set)):

11. mtp.scatter(x_set[y_set ==, 0], x_set[y_set ==, 1],

12. ¢ = ListedColormap((‘purple’, 'green’))(i), label =)

13. mtp.title('Decision Tree Algorithm (Training set)’)

14. mtp.xlabel("Age’)

15. mtp.ylabel(‘'Estimated Salary")

16. mtp.legend() 10



17. mtp.show()
Output:

Decision Tree Algorithm (Training set)

Estimated Salary

-2 -1 0 1 2 3
Age

The above output is completely different from the rest classification models. It has both
vertical and horizontal lines that are splitting the dataset according to the age and estimated
salary variable.

As we can see, the tree is trying to capture each dataset, which is the case of overfitting.

6. Visualizing the test set result:

Visualization of test set result will be similar to the visualization of the training set except that the
training set will be replaced with the test set.

1. #Visulaizing the test set result

2. from matplotlib.colors import ListedColormap

3. Xx_set, y_set =x_test, y test

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() +
1, step =0.01),

5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))
6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(),
x2.ravel()]).T).reshape(x1.shape),

7. alpha = 0.75, cmap = ListedColormap((‘purple’,'green’)))

8. mtp.xlim(x1.min(), x1.max())

9. mtp.ylim(x2.min(), x2.max())

10. fori, j in enumerate(nm.unique(y_set)):

11. mtp.scatter(x_set[y_set ==, 0], x_set[y_set ==, 1],

12. ¢ = ListedColormap(('purple’, 'green”))(i), label = j)

13. mtp.title('Decision Tree Algorithm(Test set)')

14. mtp.xlabel('Age")

15. mtp.ylabel('Estimated Salary")

16. mtp.legend()

17. mtp.show()



Output:

Decision Tree Algorithm(Test set)

3 e 0
e 1

Estimated Salary
[==] —

I
o

|
b

-2 -1 0 1 2 3
Age

As we can see in the above image that there are some green data points within the purple
region and vice versa. So, these are the incorrect predictions which we have discussed in the

confusion matrix.



